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Executive summary 

This report builds on previous research that addresses interference issues applied to multicore 
processors (MCPs). The previously proposed methods to perform interference analysis are 
organized around a set of assertions that the applicant should be able to defend when interacting 
with the certification authorities from the standpoint of safety and operations. The three 
assertions involve the applicant’s commitment to a quantified interference penalty, the 
justification that the committable interference penalty can be trusted, and the justification that the 
proposed methodology for verification is adequate and feasible. 

To facilitate the interaction between the applicant and the certification authorities regarding these 
assertions, six key aspects were developed to support the substantiation of the three proposed 
assertions; therefore, the proposed methods to perform interference analysis were developed 
around these six key aspects: 

• The validity of the hypotheses associated with an interference analysis method 

• The range of conclusions associated with an interference analysis method 

• The scope of supported applicative profiles and combinations of profiles (optional) 

• The justification of single-core test cases 

• The justification of combinations of test cases for multicore execution 

• The collection of evidence and synthesis for the certification authorities 

This research focused on the limits to the proposed methods to perform interference analysis. 
The notion of limits is developed by listing conditions under which some of these key aspects 
might be difficult to fulfill, or to be fulfilled but in an unsatisfying manner. These limits are 
classified as intrinsic to 1) the methods, 2) the MCP chip they are applied to, or 3) the industrial 
environment.  

• Limits relative to the interference analysis method point to weaknesses such that 
additional work on the method is required. 

• Limits relative to the MCP component point to weaknesses such that the method or the 
MCP selection has to be reconsidered. 

• Limits relative to the industrial environment point to weaknesses such that the 
collaboration and information sharing between various actors has to be reconsidered. 

Developing this notion of limits highlighted good properties that the applicant can expect from 
applying an interference analysis method, namely:  
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• Providing interference penalties to be applied on the software’s worst-case execution 
time and therefore on equipment’s performances; and providing safety arguments 
substantiating these penalties, with good balance between these two objectives. 

• Being adjustable according to the equipment’s criticality level and developmental stage, 
especially when these limits are considered at an early developmental stage in which 
hardware and software building blocks have not achieved a good level of maturity. 

• Being adjustable with respect to reachable precision according to the MCP’s hardware 
features, especially the monitoring and tracing capabilities. 

• Being adaptable to an industrial context involving multiple industrial actors, each having 
a partial visibility on hardware and software involved in the equipment. One example of 
such a context is Integrated Modular Avionics. 

This report proposes an example of limits to an end-to-end interference analysis method driving 
test campaigns. The examples of limits described in each category of key aspects constitute a 
non-exhaustive list and the selected example does not claim to be universal. Test cases for each 
processing units might be chosen in various ways, depending or not on targeted applicative 
profiles. Combinations and execution number of test cases for MCP execution may be proposed 
differently. Finally, the absence of singularity or other feared event can be argued in other ways. 
Nonetheless, they show that the question of interference analysis has to be considered at an early 
stage of the computation platform design (i.e., at the stage of selection of the MCP). 

For these reasons, the position of the authors of this report is that the question of interferences 
analyses should be considered in guidance material in a way that allows applicants to propose 
their own method and defend their argumentation with very few restrictions, as long as they 
provide clear answers to fundamental questions, some being developed in this report within the 
six key aspects. 
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1 Introduction 

1.1 Background 
This report builds on previous research findings that addressed interference issues on multicore 
processors (MCPs), particularly commercial off-the-shelf (COTS) MCPs for which the avionics 
suppliers face a high level of complexity on hardware and partial information from their 
manufacturers. 

The notion of interference analysis was defined as a means to assess and justify the penalty to 
apply on the worst-case execution time (WCET) of the software implemented on one MCP core 
while other pieces of software are running on the other cores. The method driving the 
interference analysis must be defined and agreed to by the certification authorities as soon as 
possible in the certification process. This may be a combination of several methods, involving 
test campaigns and static analyses of the MCP or subparts of the MCP. 

The objective of the interference analysis is twofold. First, it has to provide a realistic 
interference penalty, which will be taken into account when sizing margins. The challenge is to 
obtain correct penalties that affect performances. Second, it has to provide safety-related 
arguments justifying that this interference penalty is trustworthy, so that the impact of the 
interference analysis can be considered in traditional safety analyses methods.  

In the previous report on assurance process for MCPs, examples of techniques for interference 
analysis, interference reduction, interference bounding, and elimination were presented. This 
report focuses on interference analysis, whereas other techniques are considered as being design 
choices made by the platform developer to find the best tradeoff between performances and 
determinism. 

In the previous report [3], the authors argued that principles of Integrated Modular Avionics 
(IMA) provide a relevant framework for use of MCPs in avionics equipment, even when non-
IMA based. Although this research targets all classes of avionics systems, not only IMA systems, 
IMA terminology is used to distinguish the roles of system integrator that have an overall 
visibility on the hardware and software and the platform provider who will perform the 
interference analysis. 

1.2 Definitions 
The following definitions are used in this report: 
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Initiator: A component of the processor that has the capability to proactively start 
operations within the shared resources. Examples of initiators are central 
processing units (CPUs), direct memory access (DMA) engines, master 
input/output (I/O). 

Target: A component of the processor that can be requested by initiators and either 
absorbs this activity (e.g., for write operations) or emits its own activity as an 
answer (e.g., for read operations) to initiator’s requests. Examples of targets 
are memories and slave I/O. 

Usage Domain: Usage Domain (UD) is the set of constraints defined and mandatorily followed 
by users to ensure proper behavior of the device.  

Interference:  Interferences are alterations of the processor’s behavior seen by software 
running on one core due to activities ordered by software running on other 
cores. 

A statement developed in the previous report [3] considers that the impact of 
interferences is, at first, a problem of performance assessment and timing 
determinism enforcement. Interferences are undesired phenomena that are 
considered by the manufacturer as belonging to the functional domain of the 
processor, but are seen as dysfunctional by the avionics equipment provider, 
as explained in reference [1]. 

Interference 
source: 

An interference source is a component on the processor that has simultaneous 
use by several cores or other initiators that may entail interferences. Examples 
of interference sources are shared caches and interconnect. 

Interference 
path: 

An interference path is a configuration in which a given set of initiators (e.g., 
cores, DMA engines, master I/O) is allowed to communicate with a given set 
of targets (e.g., main memory, shared caches, slave I/O) with no restriction. 

Having an interference path does not necessarily mean interferences will 
actuallyoccur. It only represents a configuration for which there is a risk of 
interferences; therefore, interference paths can be seen as test cases in which 
given initiators are allowed to request given targets (e.g., core 0 targets the 
main memory while core 1 targets the peripheral component interconnect 
express (PCIe) controller under which the processor’s behavior can be stated. 

Interference 
analysis: 

An interference analysis is a process that considers interference paths and their 
usage according to the processor’s UD, and determines those that are 
acceptable (from a performance and safety point of view) and those that are 
not, which are referred to as interference channels (see definition below). 

Interference 
channel: 

An interference channel is an interference path for which interferences have 
been actually observed and do not cope with the equipment’s functional 
domain. 
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1.3 Literature review (update) 
As a part of the earlier research task on the Assurance of Multicore Processors in Airborne 
Systems [3],  a preliminary literature review [2] was conducted. This section provides a review 
of the research topics directly and indirectly focusing on interference issues on MCP. This 
section also presents the key papers discussed earlier in these domains and provides an updated 
review to the 2015 publication. For a more complete literature review, see reference [2]. 

1.3.1 Status of current guidance 

No change has been denoted since 2015 in guidance documents published by certification 
authorities. The most recent guidance specifically focused on MCPs is the joint CRI-MCP 
(EASA) and CAST-32 (FAA). 

As explained in the final report [3], system-level standards such as SAE ARP4754A [4] and 
ARP4761 [5] are relevant during the safe design phase for equipment embedding an MCP. The 
rationale defended in [3] is the intrinsic complexity of MCP, which leads to considering a 
computing platform as a full system and to referring to system-level guidance. IMA guidance, 
mostly DO-297 [6], is also a relevant reference for interference issues in MCP, as the robust 
partitioning aspects may not be satisfied. 

Even if they do not constitute an official position of certification authorities, EASA studies 
Mulcors [7] and COTS-AEH [1] have provided inputs to the certification authorities to develop 
position papers on the issue. 

1.3.2 Techniques for interference assessment on MCP 

Various interference assessment techniques have been proposed in the literature, most targeting a 
configuration for which each CPU hosts a single task. Examples of such techniques are as 
follows: 

• Nowotsch [8] proposed a technique called “interference sensitive WCET assessment” 
using a commercial tool (aiT) to compute an upper bound for competing accesses of 
concurrent tasks. 

• Bin [9-10] introduced the notion of application signature to compute an offline interference 
penalty for a set of co-running tasks. 

• Pellizonni [11] proposed a framework similar to Nowotsch’s WCET to assess the 
interferences on a memory controller. 
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Several frameworks [12-13] target interference issues on shared caches, especially instruction 
caches. 

• Paolieri [14] modeled a dynamic random access memory (DRAM) controller and 
computed worst-case delays for incoming requests flows emitted by CPUs. 

• Probabilistic works target interferences on MCP. Diaz recently published an example in 
reference [15]. 

1.3.3 Pathological situations sampling on MCP 

Publications in this domain usually document denial-of-service (DoS) attacks on MCPs, 
benefitting from interferences. Historical publications in this domain were delivered by 
Nowotsch [16] for DoS on interconnect networks and Moscibroda [17] for DoS on DRAM 
controllers. 

Several works have been recently published on this topic; however, the contributions of Blin [18] 
for DoS attacks on memory access of benchmarks from the open-source MiBench suite are 
noteworthy. 

1.3.4 Programming models for interference reduction, bounding, or elimination 

Interference reductions on COTS MCP are obtained by a proper configuration of Quality of 
Service features when they are available on the MCP (e.g., ARM interconnects) [19].  

Software-enforced techniques have been proposed to address interference issues in shared caches 
and memory controllers. These techniques are called cache coloring [20] and bank partitioning 
[21], respectively. They are provided within a framework called Single-Core Equivalent Virtual 
Machines [22]. 

Girbal described other techniques controlling software execution for enforcement of determinism 
under the name of Deterministic Platform Software” [23]. An example of a promising 
technology is the Memguard memory bandwidth regulator [24], which relies on hardware 
performance counters to limit the concurrent accesses of CPUs to shared resources. 

1.3.5 Hardware developments for built-in determinism in MCP 

Dedicated hardware designs for intrinsic determinism enforcement on MCP have been explored 
for the past 15 years. This research area led to several prototypes (Merasa, PRET, CompSoC) but 
none have been industrialized and entered in a long-term production. The question of developing 
custom MCP remains a current topic in the avionics community. 
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In the recent studies, the contributions of Hassan can be noted, as detailed in his PhD thesis [30], 
and summarized in several publications; the interference was focused respectively on arbitration 
in DRAM controllers [36], cache coherence mechanisms [35] and arbitration policies in 
interconnect networks [34]. These aspects are known as a major source of non-determinism on 
MCPs, mostly because of the interferences they can generate. 

1.3.6 System and module-level design for use of MCP in avionics 

Operating system designers who address system designers’ needs while dealing with constraints 
imposed by hardware have customarily addressed this area of research. WindRiver released a 
white paper [28] detailing some properties of their real-time operating system, particularly 
regarding interference issues on shared caches and busses. SysGo also contributed to this topic in 
2016 [29]. 

The reference paper from Rushby [30] on robust partitioning issues, although published in 2000, 
remains relevant with regard to interference issues on MCPs when robust partitioning property is 
required (e.g., for IMA). A summary of literature regarding robust partitioning is provided in 
reference [31]. 

1.4 Scope of the report 
This report covers the question of limits to the interference analyses. Before the topic of limits 
can be discussed, more details on interference analyses should be provided. Section 3.1.4 
includes examples of techniques that can be useful, but do not constitute solely an interference 
analysis method. 

An interference analysis is driven by applying a dedicated method, which has to be defined by 
the applicant and agreed to by the certification authorities as soon as possible in the equipment 
development stage. The authors' position of this report is that test campaigns and offline analyses 
should be combined to build an interference analysis method. Test campaigns remain central in 
the proposed approach when dealing with COTS MCP, for which the applicant faces a lack of 
information disclosed by hardware manufacturers and highly complex chips.  

Previous research defined the interference analyses’ objectives and placed restrictions on their 
scope. For instance, the question of interference triggering failure modes on the MCP was 
excluded to focus on performance and timing determinism issues. Furthermore, stakes were 
highlighted, mostly dealing with the risk of combinatorial explosions of test campaigns. This 
report proposes to organize interference analysis methods according to a set of key aspects, 
detailed in section 2.1. These key aspects are formulated as a set of questions that the applicant 
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should address independently from the way they should be addressed to ease the interactions 
between the applicant and the certification authorities for questions relative to interference 
analysis from a safety and an operational point of view. Limits to interference analyses are 
developed according to these key aspects. 

Informally, these key aspects could help to complete and defend the following assertions: 

1. Under the following restrictions, I commit on an interference penalty of x%, applied to 
applicative SW’s WCET computed individually. 

2. I trust this interference penalty because […]. 

3. I consider my experimental methodology as relevant and feasible because […]. 

Assertion 1 is detailed as a key aspect (see section 2.1.3) dealing with supported applicative 
profiles on the MCP by the platform provider. This key aspect summarizes the kind of 
constraints applied on applicative software so that the interference analysis can be refined 
according to these constraints to get tighter, and sometimes realistic, results. 

Assertion 2 is refined with two key aspects dealing with safety aspects of interference analyses 
(see sections 2.1.1 and 2.1.2) and one key aspect dealing with results synthesis and interaction 
with certification authorities (see section 2.1.6). These key aspects cover the question of 
interference analyses’ trustworthiness hypotheses, conclusion ranges, and evidence collection for 
synthesis and approval by certification authorities, respectively. 

Assertion 3 is refined as two key aspects (see sections 2.1.4 and 2.1.5) dedicated to test 
campaigns performed on MCPs during the interference analysis. These key aspects raise the 
question of the relevance of tests executed on each CPU and the combinations of such tests to 
generate interferences. 

This report proposes a classification of limits to interference analysis according to three criteria: 

• Limits relative to the method—The method will not achieve its expected results, regarding 
safety aspects, complexity (i.e., combinatorial explosion of the number of test cases) or 
results’ precision (i.e., oversizing margins because interference issues are not understood). 

• Limits relative to the MCP—The method is correct, but the selected processor is not 
appropriate to implement this method. 

• Limits relative to the industrial environment—The method is correct and the processor fits 
with method’s requirements, but the industrial environment makes its implementation 
unfeasible; for instance, because of the lack of information on MCP components (e.g., 
interconnect, memory controllers) and/or applicative software. 
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Finally, this report proposes to illustrate the limits of a method contributing to interference 
analysis by driving a test campaign. This method aims at taking into account a restricted set of 
applicative profiles supported by a platform provider to provide tight interference penalties, this 
set being possibly extended during the whole life of equipment. 

2 Limits to interference analysis 
The notion of interference analysis was developed in the white paper [2] as a means to assess and 
justify the performance degradation of an avionics platform with regard to embedded software. 
This performance degradation is expressed as an “interference penalty” applied to the WCET of 
each application evaluated separately; therefore, the objective of interference analyses is twofold. 
It produces a performance evaluation used by an integrator to size margins, but it also introduces 
some arguments that will be used in safety analyses so as to achieve certification. 

As detailed in reference [3], an interference analysis cannot aim at being fully exhaustive on 
COTS MCP. The number of test cases on an MCP is so significant that no one, even the chip 
manufacturer, is capable of testing all configurations. 

The interference analysis can be seen as a way to drive offline analyses/test campaigns within 
acceptable time and costs. This allows performance overhead to be correctly assessed and 
provides evidence that stop criteria are reached. These criteria have to be agreed to at an early 
stage of the certification process as an activity of safe design, whereas the resulting test 
campaign deals with safety assessment. 

Deciding on an interference analysis method, including the test methodology and its associated 
stop criteria must be performed carefully because the resulting test campaign may not be capable 
of achieving its objectives. The purpose of this section is to provide a generic classification of 
limits to interference analysis. It is divided into two subsections: section 2.1 introduces key 
aspects constituting an interference analysis, and section 2.2 illustrates limits on interference 
analysis on these key aspects. 

2.1 Key aspects of interference analysis 
To show the limits of interference analysis, a set of key aspects is introduced that may be 
detailed by an applicant at an early stage of the certification process. These key aspects are 
provided here as examples and should not necessarily correspond to separate entries in a 
certification plan; however, they raise questions that remain relevant to be addressed and agreed 
to with certification authorities at an early stage of an equipment development. 
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2.1.1 Hypotheses conditioning trustworthiness in an interference analysis 

As previously stated, an interference analysis method drives analyses and test campaigns 
performed by the applicant on an MCP, but it also provides arguments to defend safety analyses 
during certification. 

In safety analyses, interference analysis plays a role similar to WCET computation. It turns a 
source of risk into another source of risk that is hopefully easier to assess. More precisely, an 
applicant not performing an interference analysis faces the risk of missing deadlines in safety 
critical software because of unexpected/misunderstood interferences. Conversely, an applicant 
performing an interference analysis will be able to explain and cover performance issues on 
embedded software due to interferences, provided that the validity hypotheses of the method 
used are met.  

One important aspect of interference analysis is to clarify the hypotheses under which the 
method’s results can be trusted. The applicant should assess the validity of such hypotheses so as 
to conduct safety analyses at equipment level. 

As an example, one approach developed and discussed in reference [3] relied on the assumption 
that the behavior of an MCP is not chaotic. This means the processor’s behaviors are considered 
to have a non-null surface, so that they can be reached during close tests—the notion of 
“closeness” being defined by the applicant. Consequently, for a given set of configurations that 
are close enough, the applicant can expect to observe close behaviors and, therefore, similar 
levels of interferences, unless there is a mode change. This mode change would be observed by a 
discontinuity in interference level. 

2.1.2 Range of conclusions from interference analysis 

An interference analysis will provide interference penalties, which are engagements supported by 
a platform provider and are taken by an integrator to add safety margins on software WCET.  

Whereas having a set of interference penalties is sufficient for integration, it is insufficient for 
safety assessment. The interference analysis method needs to be accompanied by argumentation 
that the applicant trusts these penalties; therefore, the question is about the way to define the 
range of conclusions derived from an interference analysis. 

In the example developed in reference [3] and recalled in section, an example of conclusion is 
proposed. It is based on the notion of singularity, which consists in close discontinuities in the 
MCP behavior and, therefore, in observed interference levels. Informally, singularities 
correspond to isolated behaviors of the processor that may not be covered by tests and constitute 
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a feared event. In this example, the interference analysis would not conclude on the absence of 
singularities, but would provide a bound on their surface, which can be reused in a safety 
analysis and adjusted according to the equipment criticality level. 

2.1.3 Definition of supported applicative profiles on the MCP 

As explained in previous section, interference penalties are performance-related engagements 
taken by an applicant on an avionics platform embedding an MCP. However, such engagements 
may be conditioned by restrictions or hypotheses applied to embedded software, especially an 
applicative one and the way it uses hardware resources. The penalties and engagements 
constitute the supported applicative profiles for the MCP. 

This key aspect is not mandatory. For instance, it may be decided that the set of relevant 
configuration parameters on the processor are sufficient to drive the interference analysis, the 
results of which would be valid for any applications. Such a configuration would minimize the 
impact of sources of non-determinism and the number of interference paths to cover, and finally 
cover them with worst-case scenarios. A rationale should be provided that these scenarios meet 
the “worst-case” and should be defended. 

The applicative profiles may also be seen as a concept that will be continuously refined during 
the equipment’s development, as long as the software development is getting closer to its final 
version or when targeted software is not known with a good level of detail by the platform 
provider (e.g., on IMA platforms). This concept may also be extended during the equipment’s 
lifespan  (e.g., when new software has to be deployed on the MCP platform). From this point of 
view, defining an MCP applicative scope can be seen as a prediction of the future needs of 
hardware resources by applicative software. The interference analysis will figure out the 
interference penalty while using hardware resources in a similar way. 

2.1.4 Justification of individual test scenarios 

This key aspect aims at justifying the relevance of the tests that will be deployed on each core of 
the MCP to generate interferences. The main reason is the extreme complexity of a test space 
that makes any exhaustive test campaign unpractical; therefore, only a subset of all possible 
configurations will be covered. Any way to justify a given set of test scenarios rather than 
another can be proposed, even randomly generated tests. 

As an example, report [3] proposed to define and apply a metric on test scenarios, which would 
detail how much a configuration is close to another one. This metric enables the definition of a 
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notion of coverage with a given granularity over the test space, so that a threshold can be agreed 
to with certification authorities. 

2.1.5 Selection of concurrent tests 

This key aspect addresses the test campaign that consists in running test scenarios in parallel to 
measure the performance overhead introduced by interferences. The number of potential 
combinations can quickly become significant, so a selection is mandatory. This selection has to 
be justified. 

Reference [3] detailed as an example the notion of stop criteria to justify the following: 

• The decision to cover a more or less exhaustive subset of interference paths on the MCP.  

• The decision to cover a more or less exhaustive subset of hardware configurations within 
a given interference path. 

2.1.6 Evidence collection 

The previous key aspects dealing with MCP’s scope and the test campaign, both on the CPU-per-
CPU and the concurrent aspects, were tackling design issues and safety. This key aspect deals 
with the safety assessment: Evidence has to be provided to the certification authorities that the 
test campaign has been handled according to the previously agreed parameters. 

One goal is to define relevant indicators that have the following good features: 

• Communication with certification authorities is limited to only significant information. 

• The indicators remain independent from the MCP’s architecture so that they can be reused 
in several certification projects. 

• The indicators are adaptable to different criticality levels. 

These key aspects do not constitute guidance or recommendation but have to be considered as a 
set of questions that may be legitimately raised during the development of a certified platform 
embedding an MCP. The purpose of these key aspects is to show the limits of interference 
analyses in the sense that under some conditions, some of these questions may become very hard 
to address. 

2.2 Classification of interference analysis limits  
The classification of interference analysis limits is proposed in this report according to the 
following aspects: 
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• Limits relative to the methods—These mostly theoretical limits are to be considered 
whatever the targeted equipment and the MCP. A deep adaptation of the method is 
required, or limitation may appear in the criticality level that can be reached. 

• Limits relative to an MCP chip—These limits correspond to the situation for which an 
interference analysis method is suitable but cannot be deployed properly on a given MCP. 
Such limits may be tackled at an early stage by taking them into account during the MCP 
selection, or by adapting the method to fit the MCP characteristics. 

• Limits relative to the industrial context in which the MCP is used in equipment—These 
limits correspond to configurations in which an interference analysis method fits the 
selected MCP but cannot be deployed properly because of the constraints introduced by 
the industrial environment (e.g., the restriction of information communication). 

2.2.1 Limits intrinsic to interference analysis methods 

Interference analysis methods are still a research topic; therefore, no consensus method, or 
family of methods, has emerged in the state-of-the-art yet. As a result, an interference analysis 
method might be proposed even if some of its aspects have not been experienced up to a high 
technology readiness level. 

As previously explained, interference analyses play a role not only in performance assessment, 
but also in argumentation for safety analyses. Limits of an interference analysis method appear 
when one of these two objectives has not been clearly defined, or when both objectives are 
tackled in an unbalanced manner. Table 1 discusses some of these limits with regard to the key 
aspects introduced in section 2.1. 

 
Table 1. Summary of key aspects and limits of associated methods 

Key aspect Method specific limits 

Trustworthiness 
hypotheses 

When an interference analysis method targets only performance assessment, 
with a limited focus on argumentation for safety analyses, trustworthiness 
hypotheses may not be expressed clearly, or may be defined in a way that 
makes them difficult to verify. When this is the case, it adds a significant 
complexity to the safety analyses performed on the MCP. 
An interference analysis method is likely to be refined all along the 
equipment’s development. However, such a refinement might have a negative 
impact on trustworthiness hypotheses. The main risk here is to discover new 
hypotheses late in the interference analysis implementation, so that the method 
becomes irrelevant. 
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Key aspect Method specific limits 

Range of 
conclusions 

Having a clear understanding of the conclusions driven by an interference 
analysis is necessary to be able to tackle it correctly from a safety point of 
view. 
Similarly to the previous key aspect (trustworthiness hypotheses), an 
interference analysis method has to be defined so that the focus is balanced 
between performance assessment and justification of this assessment for 
safety. Therefore, the conclusions of an interference analysis need to be 
understood in a safety context and be practical for use in a safety analysis. This 
entails a risk of not clearly defining these conclusions, or degrading them for 
as long as the interference analysis gains in maturity. 
It is preferable that an interference analysis method relies on detailed 
investigation on which levelis adjustable according to the criticality of the 
targeted equipment. The same expectation applies to the range of conclusions 
of an interference analysis. 

Supported 
applicative 
profiles 

An applicative profile can be considered as an abstraction of future applicative 
software, which may not be fully known during platform development. This 
key aspect is optional, in that a platform provider may decide to target any 
kind of application, with the risk that the resulting interference analysis 
becomes significantly complex to perform on a given MCP. 
When the platform provider decides to restrict the scope of its platform with 
applicative profiles, the issue of defining the profiles has to be addressed 
carefully. These profiles describe the way applications use hardware 
resources, so that the interference analysis can be performed while taking these 
profiles into account. This introduces the risk that this abstraction: 

• Is defined in a way too restrictive with regard to the software’s actual 
behavior (i.e., it carries too much information so that an interference 
analysis would be valid only in specific cases, for instance in specific 
execution paths inside an application). Therefore, the interference analysis 
would have to consider too many applicative profiles to be sustainable on 
a real equipment. 

• Requires modifications in the applications, so that only an instrumented 
code would be evaluated with respect to interference-related issues. 

Requires information that cannot be observed on a real application without 
being heavily intrusive in an application’s execution flow (e.g., by suspending 
it with instrumentation frameworks). In this case, the interference levels would 
be irrelevant. 
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Key aspect Method specific limits 

Justification of 
test scenarios on 
each core 

Test campaigns seem unavoidable to perform an interference analysis on a 
complex COTS MCP, even if they do not constitute the sole investigation 
means, and would benefit from alternative methods (e.g., involving static 
analysis techniques). 
Individual tests to be deployed on one CPU and then run in parallel with other 
tests will be developed with an objective of stressing some hardware resources 
(e.g., main memory, shared caches, on chip networks, I/O). They constitute a 
test suite that will be used during interference analysis. 
One risk is to accumulate many test cases without a clear understanding of 
their added value within the test suite. Therefore, this suite could be extended 
infinitely, whereas the applicant would not detect that additional tests are 
useless. The consequence would be an interference analysis that is periodically 
extended for a short duration to run additional test cases (i.e., there is a risk 
that the interference analysis never produces satisfactory results regarding the 
coverage of hardware behaviors by tests because the notion of coverage is not 
properly defined). 

Selection of 
concurrent tests 

Individual test cases, deployed CPU by CPU, constitute test suites. There may 
be one test suite per CPU or test suites used on several CPUs. To generate and 
measure interferences, test cases will be picked inside test suites, deployed and 
run in parallel, so that their execution time’s overhead due to interference will 
be measured. 
Similar to test suites’ constitution (see below), the selection of test cases to be 
run in parallel is a difficult problem because all combinations cannot be 
covered; therefore, only a subset of all combinations will be tested. The 
question of the added value of a new combination with regard to the already 
tested ones needs to be understood by the applicant. The risk is the same as for 
individual tests constitution: performing an endless test campaign. 

Evidence 
collection 

The interference analysis will involve one or more test campaigns, possibly 
generating a significant amount of data on the measured interference levels, 
and the correct execution of the test campaigns. These data cannot be injected 
“as is” in a certification report. Instead, they have to be summarized so that 
only significant information is exchanged with certification authorities.  
One risk associated with interference analysis is to launch test campaigns 
without clarifying the way test results will be processed and what kind of 
information will be significant.  
Moreover, when several investigation methods are used (e.g., test campaigns 
and static analyses), the correlation between each result benefits from being 
explained at an early stage of the interference analysis, so that the contribution 
of each method to the final results is clarified. 
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2.2.2 Limits relative to MCP chips 

This section considers an interference analysis method that has been correctly defined and is 
being implemented on an MCP chip. The limits relative to the MCP component, as presented in 
table 2, are defined as implementation limits because of its intrinsic characteristics. Therefore, 
such limits may have significant consequences when they are discovered at an advanced stage of 
the equipment’s development, and may entail iterations in component selection, with significant 
extra-costs. 

Note: This is a focus on interference analysis only so that the limits do not deal with complex 
COTS issues for which literature exists. 

 
Table 2. Summary of key aspect and MCP component relative limits 

Key Aspect Limits Relative to MCP Component 

Supported applicative 
profiles 

An applicative profile is an abstraction of the way embedded software 
will use shared resources on the MCP, so that test campaigns focus on 
a set of “supported” applicative profiles. This means that a toolset has 
to be developed to determine, from a given application, to which 
applicative profile should be referred.  
A possible limitation of this toolset is a dependency to specific 
hardware features that are not implemented on a given MCP. Some 
monitoring and instrumentation features may be required on the MCP. 
Examples of such features are: 
• Low-latency breakpoint insertion capability to plug external 

debuggers. 
• Hardware performance counters. For instance, most CPUs used in 

MCP provide a couple of counters that can sample various 
hardware events. Additionally, most MCPs implement 
performance counters within shared resources, so that the 
multiplexed activities of each initiator (CPU or other master device 
such as DMA engine) can be sampled. 

• Tracing capabilities, with more or less intrusiveness in hardware 
behavior of trace probes. 

An applicative profile could typically be defined with a limited 
dependency on hardware features, so that it could be implementable on 
several kinds of processors with an adjustable level of precision. 

Evidence collection 

Similar to supported applicative profiles, evidence collection may 
require monitoring and/tracing capabilities from the MCP.  
An MCP may not provide sufficient capabilities (e.g., by not 
implementing enough performance counters), or may not provide such 
capabilities at all. This may have an impact on the quality of the 
evidence collected during the test campaign. 



 

 15 

2.2.3 Limits relative to the industrial context 

This section details the limits of interference analysis relative to the industrial context. These key 
aspects are summarized in table 3. In this industrial context, the methods are correct and the 
MCP implements hardware features that meet the methods’ requirements. The focus is to explore 
the potential limits introduced by the industrial context, and more precisely: 

• The multi-actor aspects, which are central in IMA, and limits due to existing processes and 
information not being shared between actors. 

• The concurrent development of hardware and software, in which software needs are not 
known at the early stages of hardware development, so that interference analysis has to be 
launched with partial information on applicative software. 

 
Table 3. Summary of key aspects and limits relative to the industrial context 

Key Aspect Limits Relative to the Industrial Context 

Trustworthiness 
hypotheses and 

range of 
conclusions 

Specific information might be required to verify some hypotheses. This 
information is not available to the MCP platform provider because it is 
confidential. 

Supported 
applicative profiles 

Applicative profiles are a means to exchange information between: 
• The platform provider, who has to drive the interference analysis 

according to the supported applicative profiles. 
• The integrator, who has to consider which applicative profiles to refer 

to so as to obtain interference penalties and size margins. 
• Possibly the application provider, who has a targeted applicative profile 

to cover. 
 
These actors may or not belong to the same organization and apply an IMA 
process or not. Underlying risks are:  
• Lack of information about applications, either because of the 

anticipation of their development (the integrator himself may not have 
a good overview of the applications being integrated until later in the 
development), or because of confidentiality. 

• Lack of agreement between actors on the way applicative profiles are 
defined. 

• Misunderstanding on the validity of applicative profiles, so that 
integration is performed on erroneous interference penalties. 
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2.3 Synthesis 
In section 2, the notion of interference analysis methods is structured from the basic assertions 
exposed in section 1.4 . These methods are developed around six key aspects, one being optional. 
These aspects represent distinct stakes an applicant should explore. The proposed approach does 
not apply any constraint on the manner by which the applicant is performing such exploration 
nor on the manner in which the results of the exploration are reported to clarify the impact of 
such methods on safety analyses, test campaigns, and offline analyses. 

Furthermore, the notion of limits to interference analyses is developed by listing conditions 
under which some of these key aspects might be difficult to fulfill, or be fulfilled but in an 
unsatisfying manner. These limits are classified as intrinsic to (1) the methods, (2) the MCP chip 
they are applied to, or (3) the industrial environment. Each class has various implications with 
respect to the method design or component selection. 

Developing the notion of limits to interference analyses also highlights good properties the 
applicant can expect from an interference analysis method, namely:  

• Providing interference penalties to be applied on the software’s WCET and therefore on 
equipment’s performances, and safety arguments substantiating these penalties, with a 
good balance between these two objectives. 

• Being adjustable according to the equipment’s criticality level and development stage, 
especially when considered at an early stage in which hardware and software building 
blocks have not achieved a good level of maturity. 

• Being adjustable in reachable precision according to the MCP’s hardware features, 
especially monitoring and tracing capabilities. 

• Being adaptable to an industrial context involving multiple industrial actors, each having a 
partial visibility on hardware and software involved in the equipment. One example of such 
a context is IMA. 

3 Application of proposed method and associated limits 
A common, quick but imprecise approach to tackle interference issues consists in stressing each 
interference path up to the highest possible level of workload to maximize interferences, measure 
them, and determine interference penalties. The highest penalty possible is the interference 
penalty on the platform (i.e., interference penalties are obtained by denial-of-service attacks). 

Such a direct method has good properties. For instance, it decouples interference penalties from 
applicative software (i.e., the key aspect dealing with applicative software profiles is irrelevant). 
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Moreover, it remains in line with key aspects previously presented, even if additional work 
would be required to address them explicitly.  

However, literature has shown that on COTS MCPs, without a proper configuration and severe 
restrictions of hardware use, interference levels are high when they as stressed by denial-of-
service attacks techniques. This entails a significant risk that the equipment will not meet its 
expected performance (i.e., the denial-of-service attack strategy “succeeds” in many cases). 
Preventing these situations by a good configuration of the hardware is a natural approach, and 
may be sufficient to bring interference penalties down to an acceptable level, but this problem is 
known to be difficult. 

This section proposes an example of a test campaign strategy that extends the previous approach 
to obtain tighter interference penalties. The objective is to discuss its advantageous and 
disadvantageous properties. This example is structured around the following patterns: 

• A formalism to describe an applicative profile that might be further supported on the 
platform, and a distance between a test case and such a profile. This enables building a test 
population on each CPU with test cases “close enough” to the targeted profiles. Hopefully, 
denial-of-service applications causing severe interferences are filtered out by this strategy 
as being not representative from the targeted profiles. 

• A formalism to describe combinations of test cases taken from each CPU’s population. It 
aims at highlighting test combinations that are most relevant to improve the quality of the 
test campaign and, conversely, test combinations that have a lower added value for the test 
campaign. 

• A formalism to abstract hardware situations encountered in shared resources of the MCP. 
This formalism allows for defining metrics about hardware testing quality, which could be 
proposed in a certification plan. 

The purpose of this section is not to propose a “best offer” to address interference issues. The 
position of the authors of this report is that no method is universal (i.e., most relevant for any 
kind of MCP and any kind of equipment). Instead, by specifying an end-to-end method, it aims 
at highlighting hard points and how to address them, and at discussing its good properties and its 
limits, both theoretically and practically. 
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3.1 Representation of applicative profiles 

3.1.1 Overview 

When a piece of software is executed on a CPU, it initiates some electronic activity within the 
shared resources of an MCP. Building an applicative profile for such a piece of software 
demands a good overview of both the parameters that influence interferences and a mathematical 
framework to represent them adequately. 

The characteristics retained from the activity (generated by software using hardware resources of 
an MCP), for each shared resource both for hardware components (e.g., memory, shared caches, 
interconnect networks, I/O) and software components (e.g., APEX services, lock-protected 
system calls) are: 

• The workload of traffic generated by the CPU running the software. This workload has to 
be compared to the maximum workload that can be handled by the considered resource. 
Such a maximum workload would be typically reached by a denial-of-service application, 
possibly using several CPUs. 

• The impulsivity of accesses. Memories and I/O components are capable of adapting their 
behavior to process bursts coming from traffic initiators, with various policies. For 
instance, a memory controller might favor requests from the burst to take benefit from open 
pages and improve the overall latency, or instead delay such a burst to avoid starvation 
from other initiators. 

• The locality of accesses. As for burst management, sequential accesses are detected by 
hardware components that are capable of adapting their arbitration policies. This is 
commonly the case for memory controllers. 

These parameters are represented by: 

• One signature per shared resource, representing the cumulative repartition of workload 
exercised by the considered initiator. Informally, each point (x, y) of the dataset is defined 
as follows: 

- x is the workload that can be sent on the considered hardware resource (compared 
to the maximum workload reachable). 

- y is the amount of time during software execution in which the workload on the 
resource is below x. 

• One signature per shared memory resource, representing the cumulative repartition of non-
local workload. This object is similar as the previous one, but local accesses are not 
considered. 

An example of such a signature is shown in figure 1 for a simulated workload. In this example, 
the average workload is represented around the inflexion zone (in red), whereas the right part of 
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the plot (in green) contains information on the workload’s impulsivity. For this case, the example 
could be summarized as follows: “During this execution, the application has consumed between 
10% and 30% of resource X’s maximum workload, with no significant peak.” 

 
Figure 1. Simulated example of cumulative repartition curve describing workload on a given 

MCP resource 

An applicative profile will aggregate such curves for each shared resource of the MCP, and for a 
pre-defined quantity of executions of the same application, possibly with code coverage objectives. 
Figure 2 shows an example of a beam of curves obtained from several simulations of a fictive 
application running on an MCP and exciting hardware resources. 
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Figure 2. Example of curves obtained from several simulations of the same application 

3.1.2 Building a test population on a CPU 

A representation of a profile describing the way a given application will excite shared resources, 
both hardware and software (e.g., operating system services) has been introduced. Such a profile 
is built from the aggregate of signatures computed during (many) application executions, 
possibly with a code coverage objective. 

Using a similar reasoning, it is possible to define the notion of a representative test with regard to 
a given applicative profile when the signature of a test fits in the considered profile. Therefore, 
restraining test populations to representative tests only makes sense for the remainder of the test 
campaign. 

One of the key aspects of interference analysis is the justification of test populations deployed on 
each CPU. Two alternatives can be proposed to cover this key aspect: 

• A test population might be designed to cover the targeted applicative profile, with no limit 
on the number of test cases required to reach this coverage. In this case, coverage means 
that, for any signature into the applicative profile, a test case having a close signature is 
present in the population. Function-relative distances might be used (e.g., L1 distance to 
define a mesh and a threshold can be proposed). 

• A test population might be designed with a fixed number of test cases, but a “best-effort” 
strategy is to explore a sufficiently rich set of situations (e.g., access patterns) both on 
hardware and software shared resources. The best effort aspect might be formalized by an 
entropy measure that will be maximized by the test population. 

Aggressive/Impulsive 

execution 

Non-aggressive/non-impulsive 

execution 
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3.1.3 Formalization 

The profile can be obtained either from a trace or from sampling on hardware counters. The 
following formalization assumes that there is a trace of discrete events occurring in hardware, 
which seems realistic when considering real-time trace intellectual properties deployed on 
today’s COTS processors (e.g., CoreSight™ for ARM series, Nexus for PowerPC series). 
Alternative definitions may be proposed from sampling of hardware performance counters. 

3.1.3.1 Trace representation and workload computation 

Consider a trace of discrete events with their timestamps, denoted as 

  (1) 

By using Dirac notation δti the trace function T is defined as follows: 

  (2) 

From this trace function, it is possible to define a workload function by computing a convolution 
product with a Gaussian centered function: 

  (3) 

The parameter, a, can be tuned to lengthen or shorten the period of time during which impulses 
are grouped together. The convolution product is denoted: 

  (4) 

An example of trace function is shown in figure 3 from a simulated trace, whereas the computed 
workload is shown in figure 4. 
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Figure 3. Example of trace function 

 
Figure 4. Workload function computed from trace function 

Practically, alternative definitions for the workload function are possible—for instance, from 
sampling on hardware counters. Moreover, all information might not be collectable in a single 
run, so that several executions in similar conditions, or as close as possible, would be necessary, 
with some degradation of the sampling quality. 

3.1.3.2 Application’s signature 

The application’s signature has to be computed for each run, and might differ according to the 
initial conditions. This signature is computed from the workload function as follows: 

  (5) 

3.1.4 Examples 

Table 4 shows simple examples computed from traces generated by Matlab. Each trace would 
correspond to a separate run of an application seen from one shared resource of the MCP. In 
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practice, the resulting applicative profile would aggregate application signatures from several 
dozens of execution, with views from a dozen shared hardware resources. 

 
Table 4. Examples of computed traces 

Simulated trace Workload function Application signature 

 
 

Low-aggressive trace, no 
access peak 

 

 
 

Low workload 
 

 
 

Non-aggressive signature 

 
 
Trace representing two bursts 
and a non-aggressive activity 
 

 
 

Computed workload 
represents the two bursts 

 
 

 
 
Slight impulsivity represented 

in the signature, even if the 
“typical” workload remains 

low 
 

 
 

Trace representing an 
intensive workload 

 

 
 

Maximum workload 

 
 

Aggressive and impulsive 
signature 
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3.2 Combination of test cases for parallel execution on an MCP 

3.2.1 Overview 

In this context, the following assumptions are made: 

• One (single-core) application per CPU, each having a profile. The interference penalty for 
this combination of profiles is to be assessed. An application deployed on several CPUs 
could be reduced to several single-core applications. 

• One test population for each application, possibly meeting the previous criteria; either 
coverage of the applicative profile or entropy maximization. 

The objective is to select test cases from each population, and build combinations that will be 
deployed on the MCP during the test campaign to reach quality objectives and/or stop criteria.  

An applicative profile described in section 3.1 summarizes the way shared resources are excited 
during a run of the considered application. A representative test belonging to the population will 
excite these resources in a similar manner. However, test cases will slightly differ from their 
targeted application. For instance, they might be a little more aggressive, more impulsive but 
similarly aggressive, more aggressive and impulsive.  

In the remainder of this section, the following (simplified) terminology is used: 

• An aggressive (resp. impulsive) test case refers to a test case more aggressive (resp. more 
impulsive) than its targeted application. “More aggressive” means that the test’s signature 
crosses the applicative profile’s upper margin, as shown in figure 5. 
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Figure 5. Signature profile for an aggressive test case 

• A non-aggressive (resp. non-impulsive) test case will refer to a test case less aggressive 
(resp. less impulsive) than its targeted application. “Less aggressive” means that the test’s 
signature crosses the applicative profile’s lower margin, as shown in figure 6. 

 
Figure 6. Signature profile for an aggressive test case 

• A regular test case will have a signature not intersecting the applicative domain’s upper 
and lower margins (i.e., it will strictly remain in the same level of aggressiveness and 
impulsivity as its targeted application, as shown in figure 7). 
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Figure 7. Signature profile of a regular test case 

It is important to understand how a test case can differ from its targeted application, and to 
distinguish classes of “differences” because such information will be correlated to combine test 
cases among CPUs. For instance, the following combinations will be interesting to evaluate: 

• Deploying aggressive and impulsive test cases on each CPU. 

• Deploying aggressive (resp. impulsive) test cases in parallel with regular test cases. 

• Deploying non-aggressive test cases in parallel with aggressive/impulsive test cases. 

The challenge is to explore a sufficiently rich subset of test-case combinations, but still limit 
combinatorial explosion. However, the notion of “richness” has to be defined more formally, so 
that a stop criterion can be defined.  

3.2.2 Formalization 

From section 3.2, the objective is to select test cases on each core to maximize the exploration of 
hardware behaviors within the bounds of the applicative domains. The proposed formalism 
expresses the contribution of individual test cases to the global aggressiveness and impulsivity of 
a scenario combining them. 

This formalism uses the following definition: Let f: [0,1]→[0,1] be a function and C a compact 
subset of [0,1]×[0,1]; the following statement will be used for the rest of this document:  

 if and only if  
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This means that on a regular x-y plot, the representation of f will always be under/over the 
compact subset C. 

In section 3.2, the notion of aggressive (resp. impulsive), non-aggressive (resp. non impulsive), 
and regular test cases was introduced. This notion is represented with three norms, respectively: 

• The first norm is a measure of the “quantity” of the trace that is inside the application 
domain  λ being the standard Lebesgue measure. 

• The second norm is a measure of the “quantity” of the trace that is more “aggressive,” but 
in the domain Dϵ, that was admissible in  

• The third norm is a measure of the “quantity” of the trace that is less “aggressive,” but in 
the domain Dϵ, that was admissible in  

Consequently, for every f such that the following property is verified:  

  (6) 

The function space to be explored is therefore modeled as a compact part of a plane shown in 
figure 8. As shown in this figure, intersection between this plan and axes correspond to 
combinations for which all test cases are more (resp. less) aggressive and impulsive than their 
targeted applications. 

 

 
Figure 8. Representation of the function space to be explored 
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Any combination of test cases that meet applicative domains limitations on each CPU will be 
associated with a point on this plane. Therefore, it is possible to define a coverage objective 
stating that for each possible combination of test cases, a “close” combination has been deployed 
for which interference level has been assessed. This objective is formalized as follows, with a 
coverage threshold denoted α:  

  (7) 

 corresponding to the three norms previously defined on test case combinations, and d 
being the classic distance between two points of R3. 

This framework allows limiting the number of test case combinations to be deployed on the 
MCP while ensuring relevant ones will be covered (e.g., aggressive tests on each CPU). 
Moreover, the coverage criterion may be decided at an early stage of the certification process, 
and can be adapted according to the criticality level of the targeted equipment. Reaching the 
expected coverage can be considered as a stop criterion. 

This section detailed how to select test cases on each CPU and combine them to maximize the 
diversity of combinations with regard to their aggressiveness and impulsiveness. Informally, it 
addresses the question of the test campaign’s quality from a software’s point of view. Section 3.3 
addresses a similar problem at the hardware level. 

3.3 Quality metrics for hardware testing 
The formalism defined in section 3.2 tackled the following question: “How can I build test case 
combinations to cover relevant scenarios and assess their interference levels?” This is a sizing 
parameter for the tests database, but it does not tackle the question of the quality of hardware 
testing. This aspect is tackled in this section. 

3.3.1 Overview 

Assessing interference level in a given scenario (i.e., for pre-selected test cases deployed on each 
CPU), may require several executions of this scenario. However, the number of executions has to 
be justified to claim that the hardware has been correctly tested. This problem is complex, as 
“correctly testing” an MCP is not clearly defined. 

During different executions of the same scenario, the hardware is likely to behave differently. As 
for the applicative profiles, section 3.1 defines a metric representing the “distance” between 
hardware behaviors during two executions of a same scenario. By multiplying the number of 
executions of a given scenario, a given surface of the sets of hardware behaviors covered can be 
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obtained, and it can be seen whether some behaviors are isolated (i.e., obtained in very few 
cases, and/or under specific conditions).  

This metric is defined on the notion of hardware signature, which takes into account the 
following parameters: 

• The density of accesses processed by a given hardware resource (e.g., the memory 
controllers, shared caches, interconnect networks). These accesses come from all CPUs 
and initiators like DMA. 

• The level of interleaving of concurrent transaction flows emitted by different initiators.  

Intuitively, the hardware signature is very close to the applicative signature defined in section 
3.1.3.2. It represents similar phenomena (properties on transaction flows), but from the hardware 
point of view. Here, the way hardware resources process concurrent flows of transactions 
emitted by CPUs and initiators such as DMA, master PCIe, is represented.  

The final objective is to maximize the surface of hardware behaviors covered by a given 
scenario, and simultaneously leverage the risk of isolated behavior, which could possibly 
correspond to a singularity. It is not relevant to introduce a coverage objective, as some hardware 
behaviors may not be reachable. Instead, the surface of hardware behaviors is defined on a k-
density metric: a hardware signature collected from one run must be close enough to at least k 
signatures collected in the other runs. 

A stop criterion on the surface obtained and the k-density of the set of hardware signatures can 
be proposed and argued. 

3.3.2 Formalization 

Hardware signatures are obtained with a formalism very close to the one used for the 
applications signatures. It starts from a set of event-based traces containing requests from each 
initiator to each shared resource of the MCP. These traces might be filtered to retain non-local 
and/or interleaved accesses. 

From these traces, workload functions and then hardware signatures are computed. On each 
resource of the MCP, a set of hardware signatures will be collected with several runs of same–or-
different scenarios. 

The notion of k-density is formalized as follows: Considering a set of functions F, such as a set 
of profile signatures, F is said k-ϵ dense if 
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 (8) 

where #{E} is the cardinality of set S. Intuitively, this means that for every function in the set F, 
there are at least k other functions in F at a distance of at most ϵ. An example of a k-ϵ dense set 
of signatures is shown in figure 9. 

This defines a stopping criterion for the generation of traces and signatures for the construction 
of the applicative domain. When this criterion is met, with values k and ϵ agreed to by the 
certification authorities, a representative set of traces for the monitored targets has been 
established, as shown in figure 9. 

 
Figure 9. Example of k-ϵ dense set of hardware signatures (k=4) 

“close” colors indicate “close” signatures 

3.4 Discussion 

3.4.1 Good properties and limits of this example 

This section details an example of an end-to-end method to drive a test campaign targeting 
interferences on an MCP. Such a method is strongly linked with the notion of applicative profile, 
which may not be relevant for any kind of equipment and/or level of criticality. However, it 
raises relevant questions and challenges for the test campaign to optimize: 

• The exploration of test cases around the given applicative profiles. 

• The selection of test cases on each CPU to test all relevant combinations by limiting the 
number of test cases. 
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• The diversity of MCP components’ behaviors being “excited” by the electronic activity of 
CPUs and initiators during software execution. 

The concern is to propose a method as complete as possible with regard to the key aspects 
defined in this report. Recall the assertions of section 1.4: 

1. Under the following restrictions, I commit on an interference penalty of x%, applied to 
applicative SW’s WCET computed individually. 

2. I trust this interference penalty because […]. 

3. I consider my experimental methodology as relevant and feasible because […]. 

Such assertions would find the following answers by the method detailed in this section: 

1. The restrictions are applied to embedded software and hardware properties. An 
interference penalty will be provided for a given combination of applicative profiles. An 
avionics platform embedding an MCP would be enhanced with a catalog of supported 
applicative profiles and combinations; this catalog could possibly be extended during the 
equipment lifecycle. 

Moreover, hypotheses are made on the MCP. For instance, it is expected that its behavior 
is not chaotic (i.e., for almost any test case, considering the MCP behavior and associated 
interference level, it is possible to obtain a similar level of interference by deploying 
close test cases). The opposite is not true: close test cases might generate different 
interference levels; otherwise, the processor’s behavior would be supposed to be 
continuous. 

2. The interference penalty is considered trusted because  

a. Test cases around each applicative profile have been built, so that the MCP has 
been tested with a set of test cases, each remaining within its targeted applicative 
profile. 

b. Test cases on each CPU have been selected to cover all relevant configurations, 
this point being justified by a projection of the “aggressiveness” and “non-
aggressiveness” of each combination on a plan of a 3D space. This plan is 
covered up to a predefined threshold. 

c. Test campaigns have shown that any hardware behavior was not isolated, and 
could be reproduced in closed conditions, concluding on the absence of 
singularity whose surface exceeds the threshold defined previously. 

3. The experimental methodology leads to a bounded number of test cases and scenarios. 
Thresholds on coverage or density objectives will be decided and argued at the beginning 
of the certification process, during safe design phases. For instance, it is possible to agree 
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on an interference analysis over 10,000 scenarios for a given criticality level, or 100,000 
scenarios for a higher one. 

The method described in this example meets this assertion as completely as possible. However, it 
does not mean it is sound, and it has several limits. A non-exhaustive list is provided in section 
3.4.1.1. 

3.4.1.1 Specific limits related to the method 
• There is little experience to instantiate such a method in a relevant way regarding the 

criticality level of the targeted equipment. Several parameters are adjustable (see section 
3.4.2), but their impact on the method’s complexity is not clear. More experience is needed 
to reach a conclusion on this point. 

• There is a risk that some stop criteria cannot be reached. This is the case, for instance, for 
an objective of covered surface for hardware signatures, especially when the hardware has 
few possible behaviors. 

• Whereas this method specifically aimed at avoiding combinatorial explosions, there 
remains a risk that the number of test cases grows quickly when some stop criteria become 
stringent. 

3.4.1.2 Specific limits related to the MCP 

This method was introduced with an assumption that a real-time trace is available for software 
execution and hardware resources usage so that workload and signatures can be computed. 
Although such features are implemented on several MCP available today, they are not largely 
used on the consumer market, nor documented by manufacturers. Alternative definitions of 
signatures could be proposed with a looser approximation, but this question remains open today. 

3.4.1.3 Specific limits related to the industrial context 

This method relies strongly on the way applicative profiles and hardware behaviors are 
abstracted (i.e., signature definitions). To be usable in a multi-actor context (e.g., for IMA), these 
representations need to be shared and understood by all actors (e.g., platform provider, 
module/system integrator, application provider). This introduces the risk of conflicting with 
internal processes. 

3.4.2 Summary of adjustable parameters and stop criteria 

This example shows that several parameters and stop criteria are adjustable, and would have to 
be packaged for a given equipment at a given criticality level. 
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3.4.2.1 Applicative profiles 

Applicative profiles will have to be obtained from applications analysis and testing. There can be 
(or not) an objective of code coverage when building such applicative profiles. Moreover, static 
analysis tools can be used in this phase. 

Applicative profiles are defined as the way applications “excite” shared hardware resources, the 
set of interesting hardware resources being adjustable. For instance, it may not be relevant to 
consider interconnects.  

Finally, applicative profiles can be defined with an upper margin (corresponding to more 
aggressive and/or impulsive test cases), and a lower margin (corresponding to less 
aggressive/impulsive test cases). The margin’s size can be adjusted according to several 
parameters, including the equipment criticality level and the use of similar MCPs in other 
certified products. 

3.4.2.2 Test cases combinations 

Test cases are combined according to their aggressiveness and/or impulsiveness regarding their 
targeted applications. The formalism introduced in section 3 projects these parameters on a plan 
of the 3D space. A stop criterion is the coverage of this plan, so that extreme situations (all test 
cases are aggressive or non-aggressive) are covered, and a reasonable number of intermediate 
situations are also covered. The threshold on this plan’s coverage constitutes both an adjustable 
parameter and a stop criterion. 

3.4.2.3 Parameters dealing with hardware signatures 

Hardware signatures abstract how shared resources of the MCP were excited by various initiators 
(e.g., CPUs, DMA) triggered by software execution. Reaching a predefined surface and/or 
density on the set of hardware signatures can constitute a stop criterion (i.e., the applicant will 
pursue the test campaign on the MCP until it observes a rich enough set of hardware behaviors, 
still with no isolated behaviors). 

4 Conclusions 
This report introduced the notion of interference analysis limits by structuring them around key 
aspects, addressing respectively: 

• Validity hypotheses of an interference analysis method 

• Range of conclusions for an interference analysis method 

• (Optional) Scope of supported applicative profiles and combinations of profiles 
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• Justification of single-core test cases 

• Justification of test case combinations for multi-core execution 

• Evidence collection and synthesis for certification authorities 

Limits of interference analyses have been defined as weaknesses regarding one or more key 
aspects. A classification of interference analyses limits is proposed to use three classes: 

• Limits relative to the method, for which additional work on the method is required 

• Limits relative to the MCP component, for which the method choice or the MCP selection 
has to be reconsidered 

• Limits relative to the industrial environment, for which the collaboration and information 
sharing between various actors has to be reconsidered 

The examples of the limits described in each category constitute a non-exhaustive list. They 
show that the question of interference analysis has to be considered at an early stage of the 
computation platform design, when the choice of an MCP is considered. 

Possible answers to key aspects were shown  by developing an end-to-end method driving a test 
campaign, and discussing its good properties and limits. From this example, one conclusion can 
be driven. There are many degrees of freedom to be considered when defining an interference 
analysis method, and this example does not claim to be universal. Test cases for each CPU might 
be chosen in various ways, depending on targeted applicative profiles. Combinations and 
execution number of test cases for MCP execution may be proposed differently. Finally, the 
absence of a singularity or other feared event can be argued in other ways.  

For these reasons, the position of the authors of this report is to address the question of 
interferences analyses in regulations in a way that allows applicants to propose their own method 
and defend their argumentation with very few restrictions, as long as they provide clear answers 
to fundamental questions, some being developed in this report within key aspects. 
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